Electronic National Academy of Ukraine on Culture And Arts Management Staff Institutional Repository

Розвиток математичних засад соціальних комунікацій

Show simple item record

dc.contributor.author Копанєва, Вікторія Олександрівна
dc.contributor.author Костенко, Леонід Йосипович
dc.contributor.author Симоненко, Тетяна Василівна
dc.date.accessioned 2021-10-12T07:16:09Z
dc.date.available 2021-10-12T07:16:09Z
dc.date.issued 2021
dc.identifier.citation Копанєва В. О., Костенко Л. Й., Симоненко Т. В. Розвиток математичних засад соціальних комунікацій // Бібліотекознавство. Документознавство. Інформологія. 2021. № 1. С. 42–49. uk_UA
dc.identifier.uri http://elib.nakkkim.edu.ua/handle/123456789/3446
dc.description The purpose of the article is to generalize the patterns of phenomena and processes of social communications and to develop on this basis their unified mathematical model. The methodology is a systematic, infometric, and synergetic approaches to the development of mathematical principles of social communication. The first one (systematic) is to generalize the empirical patterns of scaling in librarianship, linguistics, and science. The second one (infometric) is to obtain an analytical description of the quantitative relationship between the subjects and objects of social communications, the thirdone (synergetic) is to create their unified mathematical model. The scientific novelty of the work lies in the development of ideas about the large-scale invariance of phenomena and processes of social communications, which are approximated by the empirical laws of Bradford, Lotka, and Zipf. A comprehensive analysis of these patterns was performed, and it was stated that they differ only in areas of use, and we should raise the question of establishing a unified mathematical model of these patterns. The necessity of using stable laws of distribution of probability theory for the analytical description of the phenomenon of scaling and self-organization of social communication processes was substantiated. It was found that the considered processes are described by a stable distribution law with a characteristic coefficient equal to the constant of the golden section. Conclusions. Bradford’s law of concentration and scattering of information, Zipf ’s linguistic-statistical law, and Lotka’s law of distribution of scientists by publishing activity are manifestations of latent relations between subjects and objects of social communication (authors, publications, terminology, etc.). Clarifying these hidden relationships and defining the mathematical apparatus for their accurate description and analysis, as was done in the study, will ensure the development of the scientific base of social communications and the transition from approximation to analytical research in this area. uk_UA
dc.description.abstract Мета роботи. Узагальнення закономірностей явищ та процесів соціальних комунікацій і розробка на цій основі їх єдиної математичної моделі. Методологічним базисом дослідження обрано системний, інфометричний і синергетичний підходи до розвитку математичних засад соціальних комунікацій. Перший з них (системний) спрямований на узагальнення емпіричних закономірностей масштабування в бібліотечній справі, лінгвістиці та наукознавстві. Другий (інфометричний) орієнтований на одержання аналітичного опису кількісних відношень між суб’єктами та об’єктами соціальних комунікацій, третій (синергетичний) – на створення їх єдиної математичної моделі. Наукова новизна роботи полягає у розвитку уявлень про масштабну інваріантність явищ і процесів соціальних комунікацій, які апроксимуються емпіричними закономірностями Бредфорда, Лотки та Ципфа. Здійснено комплексний аналіз цих закономірностей і констатовано, що вони відрізняються тільки сферами використання і слід ставити питання про встановлення єдиної математичної моделі цих закономірностей. Обґрунтовано необхідність використання стійких законів розподілу теорії ймовірностей для аналітичного опису феномену масштабування та самоорганізації процесів соціальних комунікацій. Встановлено, що розглянуті процеси описуються стійким законом розподілу з характеристичним коефіцієнтом, рівним константі золотого перетину. Висновки. Закономірність концентрації та розсіювання інформації Бредфорда, лінгвостатистична закономірність Ципфа ізакономірність розподілу вчених за публікаційною активністю Лотки є виявом латентних відношень між суб’єктами й об’єктами соціальних комунікацій (авторами, публікаціями, термінами тощо). Здійснене в роботі з’ясування цих прихованих відношень і визначення математичного апарату для їх точного опису й аналізу забезпечить розвиток наукової бази соціальних комунікацій і перехід від апроксимаційного до аналітичних досліджень у цій сфері. uk_UA
dc.language.iso uk_UA uk_UA
dc.subject соціальні комунікації uk_UA
dc.subject математичні моделі uk_UA
dc.subject масштабна інваріантність uk_UA
dc.subject теорія ймовірностей uk_UA
dc.subject стійкі розподіли uk_UA
dc.subject самоорганізація uk_UA
dc.title Розвиток математичних засад соціальних комунікацій uk_UA
dc.title.alternative Development of mathematical fundamentals of social communications uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account